Combinational Logic Circuits

v' Part 1 - Gate Circuits and Boolean Equations
* Binary Logic and Gates
* Boolean Algebra
* Standard Forms

v’ Part 2 - Circuit Optimization
v’ Part 3 - Additional Gates and Circuits

Binary Logic and Gates

v'Binary variables take on one of two values.

v'Logical operators operate on binary values and binary
variables.

v'Basic logical operators are the logic functions AND,
OR and NOT.

v'Logic gates implement logic functions.

v'Boolean Algebra: a mathematical system for specifying
and transforming logic functions.

v'"We study Boolean algebra as a foundation for
DESIGNING AND ANALYZING DIGITAL SYSTEMS!

George Boole (1815-1864)

An Investigation of the Laws of Thought,
on Which are founded the Mathematical
Theories of Logic and Probabilities (1854)

™

Y

Claude Shannon (1916-2001)

A Symbolic Analysis of Relay
and

Switching Circuits (1938)

ENIAC (1946)
(Electronic

Numerical

Integrator
And

Calculator)

Binary Variables

v' Recall that the two binary values have different
names:
* True/False
* On/Off
* Yes/No
* 1/0

v We use 1 and O to denote the two values.
v’ Variable identifier examples:

* A B,y, z,orX for now
* RESET, START _IT, or ADD! Iater

Boolean Functions

Boolean Function: 1 (X1 Xs): {0,1}r > {0,1}
\) \) \)

Y \ Y
arguments domain codomain

- X;, X,,... @re variables
- X4, X4, X5, X,,... @re literals

- essentially: f maps each vertex of B" to 0 or 1

Example: X, 0, 1) (L1
F={((x =0 =0)00((x, =0, =D1), [T] x, |
(%, =1,%, =0), (% =1, x, =, 0 * L1

—_—

6 (0,0)— ., (1,0)
X1

The Boolean n-cube B"

v' B! (B) ={0,1}
v B*={0,1} x{0,1} = {00, 01, 10, 11}

v" Arrangement of function table on a hypercube

* The function value f; is adjacent in each dimension of the

hypercube to f, where K is obtained from j by
complementing one and only one input variable: Xy X; = X,

is adjacent to
' 9 @ 3 Xo X1 Xy
° s % ><O >—<1 - Xn

Xo Xy X,

Boolean Functions

- The Onset of f is {x | f(x) =1 = F (1) = f
- The Offset of f is {x|f(x)=0} =f"(0)=f°

-if f' = B",f is the tautology. i.e. f =1

-if f° =B"(f' = @), f is not satisfyable, i.e. f=0

-if f(x)=9g(x) forall x e B", then f and g are equivalent
- we say f instead of f'

- literals: A literal is a variable or its negation x, x and represents a logic function

fle f:71

X3 X3

X2

Logical Operations

v The three basic logical operations are:
* AND
* OR
* NOT

v' AND is denoted by a dot (s).

OR is denoted by a plus (+).

v NOT is denoted by an overbar (), a single quote mark (')
after, or (~) before the variable.

v The order of evaluation in a Boolean expression is:
1. Parentheses

AN

2. NOT
3. AND
4. OR

v' Consequence: Parentheses appear around OR expressions
v' Example: F = A(B + C)(C + D)

Fundamentals of Boolean Algebra

v' Basic Postulates

* Postulate 1 (Definition). A Boolean algebra is a closed
algebraic system containing a set K of two or more elements
and the two operators e and +.

* Postulate 2 (Existence of 1 and O element):.
(a) a + O = a (identity for +), (b) ae1=a(identity for e)
* Postulate 3 (Commutativity):

(a)a+b=b+a (b)aeb=bea
* Postulate 4 (Associativity):
(a)a+(b+c)=(a+b)+c (b) ae (bec)=(aeb)ec

* Postulate 5 (Distributivity):
(a)a+(bec)=(a+b)e(a+c) (b)ae(b+c)=aeb+aec
* Postulate 6 (Existence of complement):.
* (@a+a-=1 (b)aea=0
Normally e is omitted. = A switching algebra is a BA with F={0,1}

Notation Examples

v Examples:
*Y=A.B=AB isread"Y isequal to A AND B."
* Z=X+Yy is read "z is equal to x OR y."
* X=A is read "X is equal to NOT A."

= Note: The statement:
1+1=2 (read "one plus one equals two")

is not the same as
1+1=1(read "1 or 1 equals 1").

11

Operator Definitions

v'Operations are defined on the values "0" and "1" for
each operator:

OR

Z=X+Y

NOT

AND
X|Y| Z=X-Y
0|0 o)
O|1 o)
1|0 0
1|1 1

= O|O| X

= 1O | = |0 |X

Properties of Identities

v’ Some properties:

» Idempotence (a)a+a=a (b)aea= a
« Existence of Oand1 (a)a+1-=1 (b)ae0=0
 Involution (a)? =

- DeMorgan's (a)a+b=aeb (b)aeb=a+

Some Properties of Boolean Algebra

v' The dual of an algebraic expression is obtained by
inferchanging + and « and interchanging O's and 1's.

v" Unless it happens to be self-dual, the dual of an
expression does not equal the expression itself.

v Example: F = (A+C)-B+0
dual F=((A-C)+B)-1=A-C +B
v Example: 6= X-Y + (W + Z)
dual 6 = (X+Y) - (W - Z) - (X+Y) -(W+ Z)
v Example. H=A-B+A-C+B-C
dual H=(A+B)A+C)B+C)=(A+AC+BA+BC)(B+C)
= (A +BC) (B+C) = AB + AC + BC. So H is self-dual.
v' Are any of these functions self-dual?

14

Generalized De Morgan's theorems

X1 Xz Xn - 71"‘72"'..."‘)—(”

XXt X = Xy X, . X,

v’ Proof Generalized De Morgan's theorems by general
induction:
Two steps:
« Show that the statement is true for two variables

« Show that if is true for n variable , than is also true for n+1
variables:
Let Z= X, + X, +.+ X,
(Xl + Xz o+ X+ Xn+1) (Z + X,.1) = (Z n+1) =
(X; o Xz o ..o X,) o« X..; by induction hypothesis

15

Others Properties of Boolean Algebra

v

v

There can be more that 2 elements other than 1
and O.

What are some common useful Boolean algebras
with more than 2 elements?

1. Algebra of Sets
2. Algebra of n-bit binary vectors
3. Quantified Boolean Algebra (QBA)

If B contains only 1 and O, then B is called the
Switching Algebra which is the algebra we use
most often.

16

Quantified Boolean formulas (QBFs)

v

v

Generalize (quantifier-free) Boolean formulas with the additional
universal and existential quantifiers: ¥and 3, respectively.

In writing a QBF, we assume that the precedences of the
quantifiers are lower than those of the Boolean connectives.

In a QBF, variables being quantified are called bound variables,
whereas those not quantified are called free variables.

Any QBF can be rewritten as a quantifier-free Boolean formula
through quantifier elimination by formula expansion (among other
methods), e.qg.,

vV x:f(x;y)=1f(0;y)ef(ly)
and
I x:f(x; y)= (0. y)+f(ly)
Consequently, for any QBF ¢, there exists an equivalent quantifier-
free Boolean formula that refers only to the free variables of o.

QBFs are thus of the same expressive power as quantifier-free
Boolean formulas, but can be more succinct.

Boolean Algebraic Proofs: Example 1

vA+AB=A Absorption Theorem
Proof Steps Justification

A+ AB
=A-1+A" B X=X-1 Identity for .
=A-(1+B) X-Y+X-Z=X-(Y+Z) Distributive Law
=A-1 1+X=1 Existence of 1

= A X-1=X Identity for.

18

Example 2: Boolean Algebraic Proofs

v AB+ AC+BC=AB+ AC Consensus Theorem

Proof Steps Justification

AB + AC + BC
=AB+AC+1-BC Identity for .
= AB+AC+(A+A)-BC Existence of complement
= AB +AC + ABC + ABC Distributive Law
=AB-(1+C)+AC-(1+B) Distributive Law
= AB + AC Existence of 1

v (A+B) - (A+C) - (B+C) = (A+B) - (A+C) Dual identity

19

Useful Theorems

VX Y+X-Y=Y (X+Y)-(X+Y)=Y Minimization
v X+X-Y=X X-(X+Y)=X Absorption
VX+X-Y=X+Y X-(X+Y)=X-Y Simplification

VX-Y+X-Z+Y-Z=X-Y+X-Z Consensus
X+Y)- X+Z)- (Y+2Z)=(X+Y) - (X+2)

vVX+Y=X-Y X-Y=X+Y De Morgan's Law

20

v

Example 3: Boolean Algebraic Proofs

Proof Steps

(X +Y)Z+ XY

XY Z+XY

Y' (X' + X)(Z + X)
Y- 1-(Z+X)
Y (X+2Z)

(X+Y)Z+ XY =Y(X+Z)

Justification

(A+B)Y=A"FB De Morgan's Law
A-B=B A Commutative Law
AB+C)= AB+ AC Distributive Law

A+ BC=(A+B)(A+C) Distributive Law

A+A =1 Existence of complement
1-A=A, A+B=B+A Commutative Law

21

Expression Simplification

v' An application of Boolean algebra

v Simplify to contain the smallest number of literals
(complemented and un-complemented variables):

AB+ACD+ABD+ACD+ABCD
15 literal, 2 levels
= AB+ABCD+ACD+ACD+ABD
= AB+AB(CD)+AC(D+D)+ABD
= AB+AC+ABD = B(A+AD)+AC
= B(A+D)+AC = BA + BD + AC
5 literal, 3 levels 6 literals, 2 levels

22

Complementing Functions

v Use DeMorgan's Theorem to complement a
function:
1. Interchange AND and OR operators
2.Complement each constant value and literal

v Example: Complement F = XYyZ + XYy Z
F=(x+y+2)(X+y+2)
v Example: Complement G = (a+ bc)d + e

G=(a(b+T))+d)e= (a(b+T)+d)e

23

Boolean Function Evaluation

F1= xyz
F2= x+¥yz
F3=Xyz+ Xyz+ Xy

F4= Xy + Xz

x|ylz| F1|F2 | F3 | F4
olojo/ 0 | O
olo/1 o | 1
oltjo] 0 | O
olt1]1] 0| o
1/0/o] o | 1
1/o/1] o | 1
11/0] 1 | 1
11/1] 0 | 1

24

Boolean Function Evaluation

Y| ol—w|o|-|—|—|0O|O
DOIIOOIIIOO
A./_Ioa.l_ooal_ql_ll
L|lololojlolo/lo |~ O
N O — | O|l—w|O|— | O |-
>~ O |O|—|— OO |— | —
X OO0 |O|— || |—

>

X

+

N

>~ N

N XX

+ +
_ZVIZ
>+ _Wl
X X%
I

25

Shannon Expansion

v’ Let f:B"—>B be a Boolean function, and x=(x;,X,, ...,X,)
the variables in the support of f. The cofactor
(residual) f, of f by a literal a=x; or a=X; is:

fxi (X1, Xa, oy Xg) = T (X, s X1, 1, Xiageees Xy)
fz (X1, X, o, Xp) = T (X1, o X1, 0, Xisgses Xp)

v" Shannon theorem:

f:xiin + Yifyi
f:[xi+f>_<i] [>_<i+fxi]

v We say that f is expanded about x,. x; is called the
splitting variable.

26

Boolean difference

v" Universal and existential quantifications can be

expressed in terms of cofactor, with
vx.f=f, fz and 7 x.f= f, +fx

v Moreover, the Boolean difference of/ox; of f with

respect to variable x; is defined as
of/oxi=f, =fx =f o fx

where © denotes an exclusive-or (xor) operator.

v' Using the Boolean difference operation, we can tell
whether a Boolean function functionally depends on a
variable. If Jf/ox; equals constant O, then the

valuation of f does not depend on x;, that is, x; is a
redundant variable for f.

v We call that x; is a functional support variable of f if
X. is not a redundant variable.

27

Example

F=ab+ac+bc
F:GFG"'E(FE
F =ab +ac + abc + @bc

g fbi‘”{)““
| E‘/ R 0%

Cube bc got split into two cubes abc and abc

Representation of Boolean Functions

v We need representations for Boolean Functions
for two reasons:
* to represent and manipulate the actual circuit we are
“synthesizing”
* as mechanism to do efficient Boolean reasoning
v Forms to represent Boolean Functions
* Truth table

* List of cubes (Sum of Products, Disjunctive Normal Form
(DNF))

List of conjuncts (Product of Sums, Conjunctive Normal
Form (CNF))

Boolean formula
Binary Decision Tree, Binary Decision Diagram

Circuit (network of Boolean primitives) 2

Truth Tables

v’ Truth table — a tabular listing of the values of a function
for all possible combinations of values on its arguments
v Example: Truth tables for the basic logic operations:

AND OR NOT

X |Y| Z=X-Y X |Y| Z=X+Y X Z=X
0|0 0 0|0 0 0 1
0 |1 0 0 |1 1 1 0
1|0 0 1|0 1

1|1 1 1 (1 1

30

Truth Table

v Truth table (Function Table):

The truth table of a function f : B" — B is a tabulation of its value

at each of the 2"vertices of B".

v' In other words the truth table lists all minterms

Example: f = abcd + abcd + abed + abea
- == - = 0 0000

abcd + abed + abed + 1 o001

PR B AP 2 0010

abcd + abcd 3 0011

The truth table representation is g gigg
- intractable for large n 6 0110

- canonical 7 0111

f
1

oOrOoORrRORR

8

9
10
11
12
13
14
15

abcd £
1000
1001
1010
1011
1100
1101
1110
1111

oOrRrRORFRORKR OO

Canonical means that if two functions are the same, then
the canonical representations of each are isomorphic.

31

v'Truth Table or Function table

X1X2X3

000
001
010
011

1
0

1

0

[~ 100=1
X 0
1

0

X3

S 2 101
X1 110
111

v There are 2" vertices in input space B"
n ,.
v There are 2% distinct logic functions.

* Each subset of vertices is a distinct logic function:
f<Bn

32

Boolean Formula

v" A Boolean formula is defined as an expression with the
following syntax:

formula ::= ‘(‘ formula)’
| <variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
| ~ formula (complement)
Example:

f=(xrxz) + (X3) + (x4 - (~x1))
typically the "." is omitted and the (' and '~'are simply reduced by
priority,
e.g.
= X1Xo + X3+ Xgq~X1= X1Xp + X3+ XX
33

Cubes

v' A cube is defined as the AND of a set of literal functions
("conjunction” of literals).

Example:
C = X1X,X3
represents the following function
f = (x;=0)(x,=1)(x5=0)

f =%X,

V%

Cubes

v If Cc f, Cacube, then C is an implicant of f.

v If C < B", and C has k literals, then |C| covers 2nk
vertices.

Example:
C = Xy c B3
k=2,n=3 = |C|=2=23%2
C = {100, 101}

v An implicant with n literals is a minterm.

35

List of Cubes

v Sum of Products (SOP).

* A function can be represented by a sum of products (cubes):
f=ab+ac+bc

Since each cube is a product of literals, this is a "sum of
products” (SOP) representation

* A SOP can be thought as a set of cubes F

F = {ab, ac, bc}
* A set of cubes that represents f is called a COVER of f.
F,={ab, ac, bc} and F,={abc,abc,abc,abc} abc abc
are covers of /| o
f=ab +ac + bc. ’
c abc
36

SOP

® - onset minterm

Note that each onset minterm is
“covered” by at least one

of the cubes, and covers no
offset minterm.

v’ Covers (SOP's) can efficiently represent many logic
functions (i.e. for many, there exist small covers).

v Two-level minimization seeks the minimum size
cover (least number of cubes)

37

Trredundant

v Let F = {c,, ¢,, ..., ¢,} be a cover for f.

f=2 ¢
A cube c;e F is IRREDUNDANT if F\{c;} = f
Example 2: f = ab + ac + bc

bc

ab

/ Not covered

— a F\{ab} = f
38

Prime

v' A literal j of cube ¢c; e F (=f) is PRIME if
(F\{c;holci}="f
where ¢, is ¢; with literal j of ¢, deleted.
v A cube of F is prime if all its literals are prime.
Example 3 Fzac +bc +a =
f=ab+ac+bc F\{c;}u{c:}
c.=ab; ¢;= a (literal b deleted)
F\{c.}u{c ;}=a+ac+bc

Not equal to f since this € |
offset vertex is covered

Prime and Irredundant Covers

v' Definition 1 A cover is prime (irredundant) if all
its cubes are prime (irredundant).

v Definition 2 A prime of f is essential (essential
prime) if there is a minterm (essential vertex) in
that prime but in no other prime.

40

Prime and Irredundant Covers

f = abc + bd + ¢d is prime and irredundant.

abc is essential since abcdeabc, but not in bd or ¢d or ad
abc /

ad

£ 1
" o

a d

What other cube is essential? What prime is not essential?

41

Binary Decision Diagram (BDD)

v' Graph representation of a Boolean

function f

= vertices represent decision nodes f = ab+d'c+a’bd
for variables

= two children represent the two sub- root
functions hode /

« f(x=0)and f(x = 1) (cofactors)
= restrictions on ordering and

reduction rules can make a BDD
representation canonical

Logic Functions

v There are infinite number of equivalent logic
formulas

f=x+ y
= Xy + Xy + Xy
= XX + XV +y
- (x+y)(x+y)+x7
v' Synthesis = Find the best formula (or
“representation”)

43

Logic Function Implementation

v Using Switches

Switches in parallel = OR

* For inputs: — o—
= |ogic 1is switch closed N
= logic O is switch open T —o/o—
* For outputs: Switches in series = AND
= logic 1 is light on _o/o_o/o_@_
= logic O is light of f. L

T

* NOT uses a switch such Normally-closed switch = NOT

that:

= |ogic O is switch closed —

[

C
= |ogic 1 is switch open [> © @

44

Logic Function Implementation (Continued)

v Example: Logic Usigg Switches
A —o/o—oc/o—

_L—o/o—_o/c — ()

T D

v Lightison(L=1)for
L(A, B, C, D)= AD+ABC
and off (L = 0), otherwise.

v" Useful model for relay circuits and for CMOS gate
circuits, the foundation of current digital logic
technology

45

Logic Gates

v' In the earliest computers, switches were opened

and closed by magnetic fields produced by
energizing coils in relays. The switches in turn
opened and closed the current paths.

v’ Later, vacuum tubes that open and close current
paths electronically replaced relays.

v Today, transistors are used as electronic switches
that open and close current paths.

46

Logic Gate Symbols and Behavior

v Logic gates have special symbols:

Y — Y

AND gate OR gate NOT gate or inverter
(a) Graphic symbols

v And waveform behavior in time as follows:

X1 O 0 1 1

Y| O 1 o) 1

(AND) X-VY| O 0 o) 1

OR) X+Y| o] 1 1 1

(NOT) X | 1 1 [o o
(b) Timing diagram 47

Gate Delay

v' In actual physical gates, if one or more input
changes causes the output to change, the output
change does not occur instantaneously.

v The delay between an input change(s) and the
resulting output change is the gate delay denoted
by t:

1
Input] |

| T¢ | | T | t;=0.3 ns

L |
0 05 1 15 Time (ns)

48

Logic Diagrams and Expressions

Truth Table Equation
XYZ]| F=X+YZ F=X+YZ

000 o)
1
0

011 0 Logic Diagram
1
1

110 1
1

same functionl!

001
100 X
oAy) O
y4
111
v Truth tables are unique; expressions and logic diagrams are not.

010
101
v" Boolean equations, truth tables and logic diagrams describe the
This gives flexibility in implementing functions.

49

Definitions

Definition:
v" A Boolean circuit is a directed graph C(G,N) where

G are the gates and N c GxG is the set of
directed edges (nhets) connecting the gates.

v Some of the vertices are designated:
Inputs: I c6
Outputs: Oc G, IN0=Y

v' Each gate g is assighed a Boolean function f_, which
computes the output of the gate in terms 01? its
inputs.

50

Definitions

v The fanout FO(qg) of a gate g are all successor vertices of g:
FO(9) ={g' | (9.9) € N}

v" The fanin FI(g) of a gate g are all predecessor vertices of g:
FI(9)={d' | (9'.9) € N}

v The cone CONE(g) of a gate g is the transitive fanin of gand g
itself.

v" The support SUPPORT(g) of a gate g are all inputs in its cone:
SUPPORT(g) = CONE(g) n I

51

Example

@®
FI(6) = (2 4)
FO(6) = (7,9} ’
: CONE()= {1.2,4.6)

SUPPORT(6) = {1,2}

52

Circuit Representations

v For efficient Boolean reasoning :
* Vertices have fixed number of inputs

* Vertex function is stored as label, well defined
set of possible function labels (e.g. OR,
AND,OR)

* Circuits are often non-canonical

54

Canonical Forms

v Tt is useful to specify Boolean functions in
a form that:
* Allows comparison for equality.

* Has an immediate correspondence to the truth
tables

v" Canonical Forms in common usage:
* Sum of Minterms (SOM)
* Product of Maxterms (POM)

56

minterms

v minterms are AND terms with every variable
present in either true or complemented form.

v’ Given that each binary variable may appear normal
(e.g., X) or complemented (e.g., X), there are 2"
minterms for n variables.

v Example: Two variables (X and Y)produce
2 X 2 = 4 combinations:
XY (both normal)
XY (X normal, Y complemented)
X Y (X complemented, Y normal)
XY (both complemented)

v' Thus there are four minterms of two variables.

57

Maxterms

v Maxterms are OR terms with every variable in
true or complemented form.

v’ Given that each binary variable may appear normal
(e.g., x) or complemented (e.g., X), there are 2"
maxterms for n variables.

v Example: Two variables (X and Y) produce
2 x 2 =4 combinations:
X+Y (both normal)
X+V (x normal, y complemented)
><+y (x complemented, y normal)
X+Y (both complemented)

58

Maxterms and Minterms

v Examples: Two variable minterms and maxterms.

Index | minterm | Maxterm
O [oo] Y X+Yy
1 [o1] Xy X+y
2 [10] Xy X +Yy
3 [11] XY X+y

v’ The index is important for describing which
variables in the terms are true and which are
complemented.

59

Standard Order

v Minterms and maxterms are desighated with a subscript

v' The subscript (index) is a number, corresponding to a binary
pattern

v The bits in the pattern represent the complemented or
normal state of each variable listed in a standard order.

v" All variables will be present in a minterm or maxterm and
will be listed in the same order (usually alphabetically)

v Example: For variables a, b, c:
* Maxterms: (a+b+¢c), (a+b+c)

= Terms: (b+a+c),acb,and (c+b+a)are NOT in
standard order.

* minterms: abé ab cab c
= Terms: (a+c),bc,and (a + b) do not contain all variables

60

Purpose of the Index

v The index for the minterm or maxterm, expressed
as a binary number, is used to determine whether
the variable is shown in the true form or
complemented form.

v' For minterms:
* 1 means the variable is Not Complemented
* O means the variable is Complemented.

v For Maxterms:
* O means the variable is Not Complemented
* 1 means the variable is Complemented

61

Index Example in Three Variables

v' Assume the variables are called X, Y, and Z.
v’ The standard order is X, then Y, then Z.

v The Index O (base 10) = 000 (base 2) for three
variables). All three variables are complemented for
minterm O (XY,z) and no variables are
complemented for Maxterm O (X,Y,Z).

* minterm O, called myis XV Z.
* Maxterm O, called M, is (x +y + z).
* minterm6? m,=xyZ

* Maxterm 6? M = (X+Yy+z)

62

Index Examples - Four Variables

Index Binary minterm Maxterm

i Pattern m; M,

O 0000 abcd a+b+c+d
1 0001 abcd a+b+c+d
3 0011 ? ?)
5 0101 abcd a+b+c+d
7 0111 ? a+b+c+d
10 1010 abcd a+b+c+d
13 1101 ? a+b+c+d
15 1111 abcd a+b+c+d

63

Minterm and Maxterm Relationship

v' Review: DeMorgan's Theorem

X Yy=X+yandX+y =Xy

v Two-variable example:
M,=X+y and m,=x'y
Thus M3 is the complement of m2 and vice-
versa.

v" Since DeMorgan's Theorem holds for n
variables, the above holds for terms of n
variables giving:

Mi = ai and mi = Mi
Thus M; is the complement of m;.

64

Function Tables for Both

v minterms of Maxterms of

2 variables 2 variables
XY Xy Xy Xy Xty X+y Xty X+y
Xy |Mo M1 M2 M3 XYy Mo M | M; M3
OO0Of1 O 0O 000 1 1 1
01,0 1,010 011 0, 1 1
1000 0 1|0 101 1 0, 1
11l 0 O 0|1 11(1 1 1 0]

v' Each column in the maxterm function table is
the complement of the column in the minterm
function table since M, is the complement of m;.

65

Observations

v In the function (fruth) tables:

* Each minterm has one and only one 1 present in the 2n terms (a
minimum of 1s). All other entries are O.

* Each Maxterm has one and only one O present in the 2n terms.
All other entries are 1 (a maximum of 1s)

v We can implement any function by "ORing" the minterms
corresponding to "1" entries in the function table. These
are called the minterms of the function

v We can implement any function by "ANDing" the
Maxterms corresponding to "0" entries in the function
table. These are called the maxterms of the function

v' This gives us two canonical forms:
Sum of minterms (SOM) Product of Maxterms (POM)

66

minterm Function Example

v Example: Find F1 = m; + mg + m>

VFI=XYy z+xy Z+xyz

XYy Z

index

3

3
~

000
001
010
011
100
101
110
111

0

N OOl h N

O O O O O O = O

o OO - O O O O

@)

_ O O O O O O

67

minterm Function Example

v F(A, B, C, D, E) =m, + mg + my; + my3
v F(A, B, C, D, E) =

= AB'CDE + ABCD'E + AB'CD'E + AB'CDE

68

Maxterm Function Example

v Example: Implement F1in maxterms:

Fq= Mo -

Fi=(x+y+z)(xX+y+ z)(X+Y + Z)
(X+y+2Z)(X+y+2)

XY Z

M2 - M3 - Ms - Mg

Mo - M;-M;s-Ms- M = Fl

000
001
010
011
100
101
110
111

NOOlhh WN O

o-1-1-1-1 =
1-1-1-1-1 =1
1-0-1-1-1 =0
1-1-0-1-1 =0
1-1-1-1-1 =1
1-1-1-0-1 =0
1-1-1-1-0 =0
1-1-1-1-1 =1

69

Maxterm Function Example

Y F(A,B,C,D) =M ;- Mg- M, - My,
v F(A,BCD)-=

(A+B+C'+D')(A'+B+C+D)(A'+B+C'+D')(A'+B'+C'+D)

70

Canonical Sum of minterms

v Any Boolean function can be expressed as a
Sum of minterms.

* For the function table, the minterms used are
the terms corresponding to the 1's

* For expressions, expand all terms first to
explicitly list all minterms. Do this by "ANDing"
any term missing a variable v with a term (v + V)

v Example: Implement f = x + xy
as a sum of minterms.
First expand terms: f=x(y + y) + x y
Then distribute terms: f = xy + xy + x y
Express as sum of minterms: f = ms;+ m, + m,

71

Another SOM Example

v Example: F=A+BC
v’ There are three variables, A, B, and C which we
take to be the standard order.

v’ Expanding the terms with missing variables:
F=AB+B)C+C)+(A+A)B'C
= ABC + ABC' + AB'C+ AB'C'+ ABC+ AB'C
= ABC + ABC' + AB'C + AB'C' + A'BC
= my+ Mg + Mg + My + My

Standard for'm =mg+my + Mg+ Mg + My

72

Shorthand SOM Form

v From the previous example, we started with:
F=A+BC
v' We ended up with:
F = my+my+ms+mg+m-
v" This can be denoted in the formal shorthand:

F(A B,C)=2m(1,4,5,6,7)

v Note that we explicitly show the standard
variables in order and drop the "m" designators.

73

Canonical Product of Maxterms

v' Any Boolean Function can be expressed as a Product
of Maxterms (POM).

* For the function table, the maxterms used are the terms
corresponding to the O's.

* For an expression, expand all terms first to explicitly list
all maxterms. Do this by first applying the second
distributive law, "ORing" terms missing variable v with a
term equal to v- VvV and then applying the distributive law

again.
v Example: Convert to product of maxterms:
f(x,y,z) = x+XYy
Apply the distributive law:
X+XyYy=X+X)(x+y)=1.-(x +y) =x+Y
Add missing varlable Z:
X+y +2Z- (x+y+z)(x+y+z)

Express as POM. f=M, M
74

Another POM Example

v" Convert to Product of Maxterms:
f(A,B,C) =AC +BC +AB
v Use x+yz=(x+y)(x+z)withx=(AC+BC(C), y= A,
andz =B toget: B
f=(AC+BC +A)AC +BC *+B)
v Thenuse X+ Xy = X +Y To get:
f=(C+BC +A)AC +C +B)
and a second time to get:
f=(C+B+A)A+C+B)
v' Rearrange to standard order,
f=(A+B+C)A *B +() fogive f = M, - Mg

75

Function Complements

v The complement of a function expressed as a sum
of minterms is constructed by selecting the
minterms missing in the sum-of-minterms canonical
forms.

v' Alternatively, the complement of a function
expressed by a Sum of Minterms form is simply
the Product of Maxterms with the same indices.

v Example: Given F(x,y,z) = Zm(1,3,5,7)

F(x.y.z)=73,(0,2,4,6)
F(x,y,z)=1I,(1,3,5,7)

76

Conversion Between Forms

v To convert between sum-of-minterms and product-of-
maxterms form (or vice-versa) we follow these steps:

* Find the function complement by swapping terms in the list
with terms not in the list.

* Change from products to sums, or vice versa.
v' Example: Given F as before: F (x,y,2)=2,(1,3,5,7)
v Form the Complement: F (x,y, z)=2,(0,2, 4, 6)
v Then use the other form with the same indices - this

forms the complement again, giving the other form of
the original function: F (x,y, z) =11, (O, 2, 4, 6)

77

Standard Forms

v' Standard Sum-of-Products (SOP) form: equations
are written as an OR of AND terms

v' Standard Product-of-Sums (POS) form: equations
are written as an AND of OR terms

v’ Examples:
. SOP:ABC+ABC+B
- POS: (A+B)(A+B+C)C
v' These "mixed"” forms are neither SOP nor POS
- (AB+C)(A+0)
- ABC+AC(A+B)

78

Standard Sum-of-Products (SOP)

v A sum of minterms form for n variables can be
written down directly from a truth table.

* Implementation of this form is a two-level network of
gates such that:

= The first level consists of n-input AND gates, and
» The second level is a single OR gate (with fewer than
2" inputs).
v' This form often can be simplified so that the
corresponding circuit is simpler.

79

Standard Sum-of-Products (SOP)

v A Simplification Example:
F(A,B,C)=2m(1,4,5,6,7)
v' Writing the minterm expression:
F=ABC+ABC+ABC+ABC+ABC
v' Simplifying:
F=ABC+ABC+BC+B C+B()
=A'B'C+A(B +B)(C+C()
=A'B'C+All
=A'B'C+A
=BC+A
v Simplified F contains 3 literals compared to 15 in
minterm F

80

AND/OR Two-level Implementation of SOP Expression

v The two implementations for F are shown below - it is quite
apparent which is simpler!

SSess

81

SOP and POS observations

v' The previous examples show that:

* Canonical Forms (Sum-of-minterms, Product-of-Maxterms),
or other standard forms (SOP, POS) differ in complexity

* Boolean algebra can be used to manipulate equations into
simpler forms.

* Simpler equations lead to simpler two-level implementations
v' Questions:

* How can we attain a "simplest” expression?

* Is there only one minimum cost circuit?

82

